On Regular Fréchet-Lie Group of Invertible Inhomogeneous Fourier Integral Operators on $\mathbf{R}^n$
نویسندگان
چکیده
منابع مشابه
The Lie Group of Fourier Integral Operators on Open Manifolds
The theory of pseudodifferential operators and Fourier integral operators on compact manifolds is well established and their applications in mathematical physics well known , see for example Hörmander , Duistermaat , Treves 12 . For open (non compact) manifolds this is not the case, and that’s what I would like to focus on in this paper. We are interested in the geometry of the spaces of pseudo...
متن کاملLie Groups of Fourier Integral Operators on Open Manifolds
We endow the group of invertible Fourier integral operators on an open manifold with the structure of an ILH Lie group. This is done by establishing such structures for the groups of invertible pseudodifferential operators and contact transformations on an open manifold of bounded geometry, and gluing those together via a local section.
متن کاملLie Groups of Fourier Integral Operators on Open Manifolds
We endow the group of invertible Fourier integral operators on an open manifold with the structure of an ILH Lie group. This is done by establishing such structures for the groups of invertible pseudodiierential operators and contact transformations on an open manifold of bounded geometry, and gluing those together via a local section.
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tokyo Journal of Mathematics
سال: 1996
ISSN: 0387-3870
DOI: 10.3836/tjm/1270043216